Labelled Calculi for Lukasiewicz Logics

نویسندگان

  • Didier Galmiche
  • Yakoub Salhi
چکیده

In this paper, we define new decision procedures for Łukasiewicz logics. They are based on particular integer-labelled hypersequents and of logical proof rules for such hypersequents. These rules being proved strongly invertible our procedures naturally allow one to generate countermodels. From these results we define a “merge”-free calculus for the infinite version of Łukasiewicz logic and prove that it satisfies the sub-formula property. Finally we also propose for this logic a new terminating calculus by using a focusing technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequent and Hypersequent Calculi for Abelian and Lukasiewicz Logics

We present two embeddings of in nite-valued Lukasiewicz logic L into Meyer and Slaney’s abelian logic A, the logic of lattice-ordered abelian groups. We give new analytic proof systems for A and use the embeddings to derive corresponding systems for L. These include: hypersequent calculi for A and L and terminating versions of these calculi; labelled single sequent calculi for A and L of comple...

متن کامل

Rough Sets and 3-Valued Logics

In the paper we explore the idea of describing Pawlak’s rough sets using three-valued logic, whereby the value t corresponds to the positive region of a set, the value f — to the negative region, and the undefined value u — to the border of the set. Due to the properties of the above regions in rough set theory, the semantics of the logic is described using a non-deterministic matrix (Nmatrix)....

متن کامل

Hypersequent and Labelled Calculi for Intermediate Logics

Hypersequent and labelled calculi are often viewed as antagonist formalisms to define cut-free calculi for non-classical logics. We focus on the class of intermediate logics to investigate the methods of turning Hilbert axioms into hypersequent rules and frame conditions into labelled rules. We show that these methods are closely related and we extend them to capture larger classes of intermedi...

متن کامل

Multi-valued Logics

2 General theory 3 2.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Some logical calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Sequent and tableau calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Resolution calculi . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Polyadic Algebras over Nonclassical Logics

The polyadic algebras that arise from the algebraization of the first-order extensions of a SIC are characterized and a representation theorem is proved. Standard implicational calculi (SIC)’s were considered by H. Rasiowa [19] and include classical and intuitionistic logic and their various weakenings and fragments, the many-valued logics of Post and Lukasiewicz, modal logics that admit the ru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008